اثر هیدروباکتریومیک اسکوات بر راسته آب‌پرازان در آب‌های کم عمق و مناطق جزر و مدی در سواحل ایرانی خلیج فارس و دریای عمان

عبدالله نجفی، آرش شکری

چکیده

پستانداران دریایی از مهم‌ترین گونه‌های دریایی بوده و در صدر زنجیره غذایی قرار دارند. سلامت و جمعیت این گونه‌ها نشانه سلامت محیط زیست است و دور بودن محیط زیست دریایی از جانشینی حاد می‌باشد. در مطالعه‌های خاص، به منظور بهبود مدیریت زیستگاه‌های دریایی، محل به گل تشتی نشانه‌ای آب‌پرازان از پستانداران دریایی در باز زمانی ۶۰ ساله بررسی و با پیدا کردن اسکوات که برای شناورها در آب‌های کم عمق و ساحلی رخ می‌دهد، مقابله شد. در این راستا ارتباط نگاهی آب‌پرازان و پستانداران خشک‌زی، شکل بند و زوال حركتی این گونه‌ها و بدن اجسام شناور در یک اعماق مورد بررسی قرار گرفت. مشخص شد که به گل تشتی این پستانداران مشابه به پیدا اسکوات در سواحل کم عمق و منطقه جزری و مدی رخ می‌دهد. از جهت مدیریت این زیستگاه‌ها و حفاظت از این گونه‌های ارزشمند، شناسایی اشکال و اعماق سواحل و جریان‌های ساحلی مفید خواهد بود.

کلیدواژه: به گل تشتی، آب‌پرازان، اسکوات، اکوسیستم، جریان‌های ساحلی

abdulla.najafi@yahoo.com

1- مسئول مکاتبات: عبدالله نجفی

67
۱ - مقدمه

به استناد، صید بزرگ‌ریزی نهنگ در قرن ۱۹ و اولین قرن پیستم میلادی، در طی بیش از چند دهه گذشته، میزان مرگ و میر پستانداران دریایی در ارتباط با فعالیت‌های مختلف انسان افزایش یافته است. این فعالیت‌ها شامل تداخل با ماهی‌گیری و صیادی (گرفتن) در توره‌های صیدی، صید صمیمی و Beasley&Davidson, 2007; Carriague et al., 2016; Pritzker et al., 2007 Brabyn, 1991; Gulland & Hall, 2007; Gulland, 2016 Brabyn, 1991; Gulland & Hall, 2007; Gulland, 2016 Carriague et al., 2016; Gulland & Hall, 2007; Greig et al., 2005 (برخوردار با Dolman et al., 2009; Wright, 2007; Carriague et al., 2016 Dolman et al., 2009; Donald & Carriague et al., 2016 کشتی ۲۰۰۷ و Gulland & Hall, 2007) (Wright, 2007; Gulland & Hall, 2007) و در معرض صداهای شدید قرار گرفتن است (Gulland & Hall, 2007; Wright, 2007) و تغییرات جزیره در مدت (۱۹۹۹) (Greig et al., 2005 تشخیص علمی دقیق به گل نشنی یا مرگ حیوان به گل نشنده در اغلب موارد دشوار است (Sudhan et al., 2017; Moor, 2015). راسته آب پایان‌شامل دو زیر راسته نهنگ‌های دنداندار و نهنگ‌های بدون دندان است، بدن این حیوانات برای زندگی در آب تغییر شکل یافته است (۲۰۰۹) باید دمی‌شدن سطح آب را در چنین حوزه به خارج آپ به وسیله بالا و پایین بردن آن انجام می شود (۲۰۰۸) Reidenberg, 2007; Bone & Moore, 2007 سگواره‌های این گونه ها نشان می دهد که در گذشته نزدیک به گل نشنی رخ داده است و شاید این یک پدیده کاملی بود (Brabyn, 1991). ولی افزایش این بدنه دولیته که از عناوین دندان می‌دهد Mazzuca et al., 1999; Reidenberg, 2007; Williams, 2001.
در سير تکاملی، استاندارد دریایی از زیر راسته Archaeceti بوته و در ۵۰ میلیون سال پیش می‌زیستند. اند و تمامی آن‌ها با ارتباط درونی انسان منفرط شدند. در اولین دوران انسان دو تاکسون جهانی‌پیمانی بوتهند که آب‌شیرین می‌تواندند. جند میلیون سال بعد در انسان‌مایی Contemporay و Pakicetus به‌وجود و Rodhocetus توافت با کمک انتحال دم خوش شنا کرد و آب درای نیوشت. در اواخر دوران انسان، پاسیژوراسیون‌ها به‌دلیل اختلالات پیش‌یافته کوچک بوتهند. شاید با علت اندازه کوچک و محدودیت حرکت اعضای جلوی این نمی‌توانند در در خشکی حرکت کنند. بنابراین می‌توان گفت که در اواخر انسان، نهنگ‌سالان کاملاً تغییر شده و توانایی به دنیا‌وردن بیشتر از آب نیز به دست آوردند (Cooper et al., 2007; Uhen, 2007; Fish, 2018).

اثر اسکوکت ۱ به عنوان یک پدیده هیدرومیکمی که در زیر بدن اجسام شناور در آب های کم عمق احساس می‌شود به نحوی که در آن جریان جهت داری که با سرعت در آب حرکت می‌کند، ناحیه ای از فشار پایین را ایجاد می‌کند. باعث می‌شود امواج و اوج بندی به طرح برند و واریک (استطم لاین) به بستر نزدیک تر شوند به نحوی که این یاده در محدوده عمیق تر کمتر بوده و لمس بستر Brien, 2000; Duffy, 2008; Lataire et al., 2012; Mucha et al., 2015) دیده می‌شود (Serban et al., 2016; Ha & Gourlay, 2016.

پاسیژوراسیون و کاهش تعادل و انجام اعمال خصاپی، اثری زیادی مصرف می‌کند. جنوا در اینجا، قادر به بازگشت به عمق مناسب نیست. در مناطق جزر و موردن آبی پایین آدمی امکان عملی و احساس جاور با تریلین‌های بدن و آمادگی این محدوده، تغییر شکل داده و بازگشت آن به سواحل عمیق تر (Williams, 1999; Williams et al., 2017) مشکل تری می‌شود.

اثر اسکوکت ۲ اجسام بزرگ نظیر کشتی، تقریباً مناسب با ربع سرعت جسم شناور تغییر می‌کند Ha& Gourlay (بنا براین، با کاهش سرعت به نصف، اثر اسکوکت به یک چهارم کاسته می‌شود). (بنا براین، Benes & Kollarik, 2011) اثر اسکوکت معمولاً زمانی که نسبت عمق به قسمت آب‌ور کشتی کمتر از چهار برابر و یا هنگامی که این اجسام شناور به ساحل نزدیک می‌شوند بیشتر قابل احساس می‌باشد. این موضوع می‌تواند منجر به لمس بستر، گرفتار شدن در مشکلات و به گل نشینی منجر شود در این اجسام شناور گردید (Serban et al., 2015; Mucha et al., 2016).

1 Squat Effect
2 squat effect
مواد و روش‌ها
به منظور مقایسه گل‌نشینی پستانداران دریایی با پدیده اسکوت، محل‌های به گل‌نشینی (شامل خور موش، جاکس، بندن لرک، جزیره قشم، بودن‌سگ) بندن‌درا نشر، بدن‌سگ، بردخوی، چاه می‌باشد (به صورت میدانی مطالعه گردید). در خصوص محل و وضعیت به گل‌نشینی مطلوب با اخبار رسمی و امارهای مربوط به این موردی الزامی 70، بگ بررسی شده‌اند در ماه گیرنده و بومیان منطقه توزیع و از این نتایج، 80 مورد گواهی و جهت تجزیه و تحلیل داده‌ها استفاده شد. سپس داده‌های مربوط به جهت تجزیه و تحلیل داده‌ای در ترم افزار از Spss تعیین شدند و در ترم افزار از آزمون همبستگی برای بروز ارتباط بین عوامل و بررسی نتایج با رد فرضیه‌های پژوهش استفاده شد.

اسکوت‌ها در طریق قرموی یک ساده زیر محسوب شده:

(در آب‌های آزاد)
Squat = (CB X V2) / 100
(1)

(در آب‌های محروم و مجاور)
Squat = 2 X (CB X V2) / 100
(2)

سال‌های
اسکوت‌ها به طور مستقیم با مریخ ترسرعت متناسب است. سرعت به صورت گره را نشان می‌دهد و
اسکوت‌ها به طور مستقیم از طریق ضریب مانعیت کند (CB) با فاکتور مانعیت کند، که بکسینت بین بسته عرضی نمایش داده شما و مقطع کنال با روش‌های است. اسکوت‌ها از طریق فاکتور مانعیت کند، که بکسینت در آب‌های محدود (مجاور سال) Vatorre et al., 2017;

نتایج و بحث
دانش‌آموزی‌های می‌دهد که عوامل مختلف، هم طبیعی و هم انسان‌ساز، ممکن است به تنها زیبا و
پای به صورت ترکیبی در به گل‌نشینی پستانداران دریایی عمل کند. در حالی که با جمع آوری داده
های پس از به گل‌نشینی و بررسی خیابان‌های مردم، برای بدست آوردن علت اختلال زمین گیم شدن
Greig et al., 2005; Dias, 2016; Carriague et al., 2016;

Brabyn, 1991; Donald & Gordon 2001; Gulland & Hall, 2007; Lefebvre & Quakenbush, 2016; Sudhan et al., 2017;
هنگامی که عمق آب نسبت به آب‌خور کشته و بدن آن حیوانات کمتر است، نیروهای هیدروdinامیکی به شیوه‌های مختلف، بدن آن اجسام و جانوران را تحت تأثیر قرار می‌دهند. با توجه به شکل ۱، زمانی که عمق آب کمتر از ۱/۵ برای آب‌خور جسم شناور می‌شود، اسکوتو آگاهی می‌گردد (Nakisa et al., 2007; Duffy, 2008; Lataire et al., 2012; Serban et al., 2015; Mucha et al., 2016). در آب‌خور کم عمق و بیشتر ماسه، این توجه باینگی جیران آب در این سواحل نسبت به سواحل با شبیه‌ای دارای حرکت بیشتری می‌باشد (Mucha et al., 2016)، این راه‌های حرکتی کرده و آمیده، ارتعاش حرکتی بدون هدف و واقع آهسته، به سواحل تبدیل شده را در این گونه‌ها باعث می‌شود. این موارد در محیط‌های شبیه به کانال و خوراک بیشتر دیده می‌شود (Mazzuca et al., 1999) (Nakisa et al., 2007; Benes & Kollarik, 2011).

شکل ۱: بیشینه اسکوتو در آب‌خور آزاد و آب‌خور محدود شده و کم عمق (Serban et al., 2015).
مشابه با به گل نشینی، پدیده اسکوئات در سواحل و نواحی کم عمق برای کشتی‌ها از جمله نفت و کشتی‌های قاره‌ای مشکل روبو می‌کند. طریقه این شناورها برای رهایی از این پدیده، اقدام به ساخت ساختاری مشابه با گل ماهیان (در زیر بدن ماهی) از ناحیه سر نا قسمت پایینی باله دمی ماهی کشیده شده است. با همین نام می‌کنند و با این روش مكافحه‌های این شناورها را برای عبور از آبهای کم عمق، نزدیک ساحل و کانال های آب مناسب می‌کنند.

2-3 شبیله و شرایط نوبت‌گرفتی
نقاط به گل نشینی این پست‌داران مورد مطالعه و در شبیله‌های مختلف مورد بررسی قرار گرفت. از کل 38 آب‌پارازهای بغل نشته، 268 درصد در منطقه ساحلی با شبیله کمتر از 5 درجه مشاهده شده (Mazzuca et al., 1999; Williams, 2001; Cooper et al., 2007; Vatorre et al., 2017). از نظر درصد به گل نشینی، اختلاف معنی‌داری با سواحل با باده تنگ‌گلخانی (15/8 درصد) و صخره‌ای (7/8 درصد) را نشان می‌دهد (Mucha et al., 2016).

جدول 1. درصد به گل نشینی آب پارازهای در سواحل ایرانی خلیج فارس و دریای عمان

<table>
<thead>
<tr>
<th>شرایط</th>
<th>شماره شکست موجه</th>
<th>تعداد به گل نشته</th>
<th>شبیله (درجه)</th>
<th>انواع سواحل</th>
<th>ردیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیشه‌ای</td>
<td>58 درصد از نتایج</td>
<td>29</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>سکلانی</td>
<td>15 درصد از نتایج</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

72
3-2 مصرف انرژی

از نظر مصرف انرژی در پیستنداران دریایی، موضوع فعالیت در حالت شنا و غواصی از هم دیگر جدا می-باشد (Williams, 1999; Williams, 2001; Reidenberg, 2007; Williams et al., 2017). در حالت شنا، شناگر حرکت افکتی داشته و حیوان دسترسی به هوا را تامین می‌کند. در حالت غواص، جانور غواص تحت تغییرات فیزیولوژیک قرار می‌گیرد. مجموعه‌ای از تغییرات فیزیولوژیک همچون برادیکاردیا، انقباض بدن از طریق فشار محيط و کاهش فعالیت‌های متابولیک و بایین آمدن میزان مصرف انرژی رخ می‌دهد که در شکل 3 قابل مشاهده است (Williams, 2001; Williams, 1999).

شکل 3: هزینه انرژی حرکتی در پیستنداران دریایی نسبت به سایر جانوران شناور و غواص (Williams, 1999)

3-3 زوان‌های حرکتی

در اغلب گونه‌های ماهیان نسبت باله دمی و یا مربع آن به طول بدن (شکل 4 مشخص کننده سرعت این آبزیان می‌باشد (Victor, 1990; Tokic & Yue, 2012).
در مورد فیزیک به گل نشینی اجسام بزرگ و پستانداران دریایی صحبت شد ولی در موارد زیادی مشاهده شده است که گونه‌های زیادی در این مناطق زندگی کرده و این زیستگاه را انتخاب کرده‌اند. به گل‌نیشینی به نحوی که برای پستانداران دریایی رخ می‌دهد در آن‌ها دیده نمی‌شود (Bone & Moore, 2008; Helfman et al., 2009; Naz, 2016). گونه‌های نظیر ماهیان با سایز بزرگتر از این گونه‌ها در سواحل زندگی می‌کنند ولی در این شرایط قرار گرفتن و به این شکل، در معرض هلاکت و به گل نشینی قرار نمی‌گیرند. استفاده از هوا برای تنفس ریه‌ای و عدم داشتن باله دمی که به صورت جانبه فشرده شده باشد، این گونه را در معرض پیدا به گل‌نیشینی قرار می‌دهد (Nakisa et al., 2007).

![گونه‌های دریایی](Fishbase@fin.ph)

این جانوران دارای چگالی یا جرم حجمی بالاتری نسبت به آب دریا می‌باشند، با گزارش گرفتن در محیط‌های کم عمق با دامنه وسیع شکست موج (جدول 1) و جریان‌های آبی موجود تعدادی خود در دست می‌دهد (Mucha et al., 2016). در ماهی جمعه‌هایی از گونه‌های ماهیان ساکن مناطق مرجانی (شکل 5) درصد کمی از طول بدن خود را برای حرکت و جابجا شدن استفاده می‌کند. در نتیجه در مناطق جریان و میان و سواحل کم عمق، قادر به جابجا شدن و حرکت در مخالف جریان امواج نبوده و با این جریان‌های آبی ایجاد شده به طرف شیب کم شسته می‌شوند (Mucha et al., 2016).
در گونه هایی از ماهیان که با حرکت های غیر متعارف و غیرقابل پیش بینی محيط آبی، مواجه هستند، گونه ها به صورت تکاملی به باله دمی متانسب مجهز شده اند (Sanchez & Berta, 2009; Williams et al., 2017). وجود زوائد حرکتی مشخص در گونه های خزندگان، نظیر آنچه که در لاک پشتان دریایی دیده می شود، آنها را قادر می سازد که در سواحل شبیه تخمگذاری کرد، و نوزادان آنها با کمک محیطهای جزر و میدو سواحل کم عمق چرخه زندگی خود را کامل می کنند. حالا برابر گونه هایی از پرندگان دریایی که دارای زوائد حرکتی تقریبا مشخص هستند، در محیط های ساحلی با شب کم، نوان حرکتی بهتری داشته، قسمتی از چرخه زندگی خود را در خشکسالی مجاور این سواحل طی می کنند و به گل نشینی در آنها دیده نشده و به حداقل می رسند (Greig et al., 2005). شکل قلیب‌ها در گونه های مختلف متفاوت است، به طوری که نام استفاده وپژه در زیستگاه (استفاده از زیستگاه خاص، بازده هیدرودینامیکی و محدوده حرکت متفاوت می باشد(Sanchez & Berta, 2009; Tokic & Yue, 2012).

![شکل 1: دامنه شکست‌درد سواحل مختلف آب‌های ایرانی خلیج فارس و دریای عمان](http://example.com/image.png)

این جانوران در محیط آبی زندگی می کنند ویژه جنگلی گونه‌های آبزی نظیر ماهیان که در همین محیط زندگی می‌کنند متفاوت می باشند این گونه‌های دارای باله دمی هستند که از بالا به پایین فشرده شده است و با باله دمی ماهیان که از جوانگی فشرده شده است متفاوت دارد و در محیط های کم عمق قادر به بازگرداندن جانور به محیط عمیق تر نیست و در محیط های با عمق کم و پهن‌های جزر و مدي (به دلیل دامنه حرکت در محور عمودی) غیر فعال می باشند و قادر نیست که جانور را

1 Flipper
من اینکه انواع مختلف گونه‌ها به‌کمک مناسب بزرگ‌تر کردن‌(در سال 2009) (شکل 6).

شکل 6: نحوه حرکت در گونه‌های مختلف آبزی (lets-evo.net)

این تغییرات در حالات مختلف شکل‌بندی و ضایعی آن است. تغییرات تکاملی در شکل کلی بندها در اعداد وال‌ها (نمونه‌سازی) مشاهده کردند. (Bone & Moore, 2008; Helfman et al., 2009)

شکل 5: شواهد فسیلی

یکی از مهم‌ترین اختلافات بین پستانداران دریایی و خشک‌تری زی شکل بدن و ضایعی آن است. تغییرات تکامل در شکل کلی بندها در اعداد وال‌ها (نمونه‌سازی) مشاهده کردند. (Bone & Moore, 2008; Helfman et al., 2009)

روند است. این پستاندار دریایی توانایی حرکت در روزهایی زیمت نشده و قادر به شنا در خشکی بوده است. اندازه‌های بدن این پستاندار تکامل یافته، قبیح‌تر از گونه‌های موجود هستند از موج پشتی شکمی بدن. (Bajpai et al., 2009; Reidenberg, 2007; Cooper et al., 2007) این وَل قدم زن، از طریق موج دار کردن سطون فقرات و حركات پارو مانند اندازه‌های عقبی کهن. گونه Basilosaurids با طول 25 متر زیستی بودند که از اندازه‌های عقبی محکم بهره می‌بردند. این پستانداران که درای سوزن فقرات بزرگ مه‌هند از این محیط گزین بزرگ‌تر کرده و Reidenberg, 2007; Cooper et al., 2007) (شکل 7) (Tokit & Yue, 2012)

اشکال فسیلی نشان می‌دهد که این گونه ها دو مرحله تکاملی برای حیات در آب را سیری کردند

اند سازگار با ماحیات آبی و آبزیان دریایی شده‌اند. اولین‌ها با داشتن پاهای قوی یک شناگر قوی

پا و نیمه آبی شده‌اند و در مرحله بعد با داشتن دم قوی، شناگ و قوی شده و کاملاً آبی و با دریا

سازگار شده‌اند. این تغییرات نشان می‌دهد که این گونه‌ها با قرار گرفتن در مناطق با عمق کم، نیاز به

پاهای قوی، هستند تا بتوانند در این محیط، بدون مواجه شدن با اسکوات و مشکل تنفسی، فعالانه

حرکت کنند و از خطر برخورد با استر در یک محیط کم عمق نجات یابند (Reidenberg, 2007).

(8)

در گذر از مرحله نیمه آبی به مرحله کاملاً آبی‌زی، قمیمه‌های عقبی با گذشت زمان کوچکتر و از

اسکولات محوری جدا و در دیواره بدن جانشینی می‌شوند. این‌ها از مشخصات وله‌های بپیش‌زمینه امروزی می

پاشند که با حركات دمی و نووان هایی لازم، کله فعالیتهای خود را در محیط‌های رودخانه‌ای به انجام می

رسانند (Williams, 2001; Reidenberg, 2007; Fish, 2018).
بیان پیشنهادی انسکات بر راسته آب پریان در آب های کم عمق و مناطق جزری و مدی

۴- تحقیق حاضر در سواحل ایرانی دریای فارس و دریای عمان صورت گرفت در این مطالعه محل های به
گل نشینی در طی دو دهه از نظر شبیه سازی در سال ۱۳۹۲ سرور بررسی قرار گرفت، مشاهده
گردید که به گل نشینی پستانداران دریایی در سواحل با شبیه کمتر از ۵ درجه، اختلاف معنی داری را
به آنها می‌دهد. این بیان به پیچیدن خط ساحلی با سایر سواحل بافت سکلتی (۵ تا ۲۰ درصد) به
باگت از ۲۰۰ نشان می‌دهد. بر اساس مقایسه هزینه انرژی جابجایی در سه محيط خشکی، جزر و
مذي که گله داری و محیط‌های دیگر دریایی با عملکرد بالاتر مشخص شد که گونه‌های دیگر برای حرکت و
جابجایی در محیط آلی، افزایش مصرف می‌کنند. عمق این محیط ها کم بوده و اثر اسکات
با به‌شمار می‌آید. برای شکوفایی و رشد، تابعه به اندازه فیزیکی، مراحل
تکاملی و نحوه سازگاری با محیط‌های دریایی مشخص کرده که این پستانداران برای غروب از این
منطقه نیاز به تغییرات در سطح فشار، زوال و باله‌های حركتی مطلق با تغییرات تکاملی اجادید
خود که در دوران زمانی نشانی انسکات بودند اثر اسکات از این منطقه غروب کرده و در محیط
دریایی قرار گرفتند. این می‌باشد (2017) که در دلیل نداشتن زوال حرکتی قدرتمند، مناسب با عمق محیط و
جبهه های ساحلی با اثر اسکات می‌شوند. و در نتیجه به گل‌تشینی در آنها دیده
می‌شود (2009). Greig et al., 2005; Sanchez & Berta,

دریایی قافقل گیل و زوال حرکتی مشخص بوده و باله‌های آنها از جووی بیشتر شده‌اند این
جانور قادر به حرکت در این گونه امکان عمق، ترکیب ساحل و این کانال‌ها بوده و دچار بی‌قابلی به گل نشینی
Brien, 2000; Helfman et al., 2009; Ha & Gourlay,
مشابه با پیده اسکات در شناورها می‌گردد،
Vatore et al., 2017; Delefortrie et al., 2010).
نوعی از محاسب نور به ویژه گونه‌ها را در مواقع چرخ با داشتن وزن بدنی و ناپای کمیتی

اعضا بر یکدیگر در معرض خطر راه‌پیمایی دادن در آب بدن و مرگ قرار می‌دهد.
در این مطالعه مشاهده گردید که حضور این گونه‌ها در سواحل کم عمق و مناطق جزر می‌باشد. این مطالعه اثر استراتیجی و حمایت از جنگل‌ها در بخش اول کشور بوده و انجام حفاظت بهتر این گونه‌ها از طریق شناسایی و تولید نقشه‌های زیستی این گونه‌ها این مکان بهتری می‌سازد. انتخاب و انتخاب این گونه‌ها در مناطق جنگلی است. در نهایت، این گونه‌ها به عنوان میانگین اولیه از اینگونه‌ها با مراحل انتخاب کننده ای را به همراه خواهد داشت ولی جغرافیا قادر به حل مشکلات این پیشانی‌ها نیست. باش و راه حل‌های ابزاری منعکس کننده ارث‌های اجتماعی نظر تقابلات فرهنگی، اقتصادی، علمی و حفاظتی باشید و دوگانه و سازمان‌های حمایتی می‌باشد. با استفاده از این جانوران در حیات دریاها اقدامات ارزشمندی را برای حیات آنها بپردازند.

تشکر و قدردانی

بدینوسیله از کانی‌پان و مفسری از سازمان دیده‌بانی، مدیران محترم حمایت محیط زیست استان‌های جنوبی کشور، از دوستان، شهید به ویژه آقای ناخدا مصطفی فولادی و سابر دوست‌اند که در مطالعات میدانی شرکت داشتند سپاس به تشکر و قدردانی می‌گویند.

منابع

Fish, F.E. 2018. Secondary Evolution of Aquatic propulsion in higher vertebrates: validation and prospect. Integrative and Comparative Biology. 56: pp 1285-1297

lets-evo.net

The-Crankshaft Publishing’s what-when-how.com. mail@the-crankshaft.info
Squat hydrodynamic effect on order of cetaceans in Iranian shallow waters and tidal zones in the Persian Gulf and Oman Sea

Najafi, A¹¹ Shakoori, A²
1. Bushehr Department of Environment
2. Chabahar Maritime University, department of Marine Biology

Abstract
Marine mammals are the most important marine species. They are at the top of the food chain. Population of these species is a sign of the ecosystem health of the sea, and remoteness of the marine environment from an acute challenge. In the present study, in order to improve marine habitat management, the place to flowering the water-speculator of marine mammals in a 20-year period was studied and compared with the phenomenon of floaters that occur for buoys in shallow and coastal waters. The evolutionary relationship of cetaceans, terrestrial mammals, body shape and motion appendages of these species and the body of floating bodies in these depths was studied. It was found, stranding of these marine mammals, similar to the squat phenomenon, which it happens on shallow shores and the tidal zone. In order to manage these habitats and protecting these valuable species, identify topography, forms and depths of the beaches and coastal flows, it will be useful.

Keyword: stranding, cetacean order, squat phenomenon, evolutionary relationship, coastal flows

¹ Corresponding Author: abdulla.najafi@yahoo.com